跳到主要内容

49 篇博文 含有标签「码农札记」

查看所有标签

Scratch 编程语言 2

· 阅读需 7 分钟

很早之前,大约是两千零几年的时候,我曾经看别人演示过 LabVIEW 专为儿童教育,以及乐高玩具开发的特别版本。对于少年儿童来说,图形化编程比文本编程要更有吸引力。可惜的是,LabVIEW 起个大早,赶个晚集。现在再提起儿童教育或玩具领域的图形化编程语言,多数人只会想到 Scratch。

Scratch 是 2003 年才诞生的一个新语言。它能够一出现就挤掉 LabVIEW,迅速占领整个儿童教育领域,主要因为具有以下一些优点:

  • 开源。Scratch 是由 MIT 开发的,它从一开始就采用了开源的策略。儿童使用的编程语言,一个重要的功能是控制各种玩具。反过来说,能被玩具厂商广泛采纳的编程语言,会更容易被推广开来。玩具厂商想把自己的产品与 LabVIEW 结合,甚至直接发布一个定制版的 LabVIEW 成本是非常高的。即便是在工业界,LabVIEW 具有统治地位的测试测量领域,LabVIEW 也主要是与 NI 公司自己的硬件结合使用。玩具行业的利润更低,厂商们自然倾向于便宜的软件。更何况 Scratch 还是开源的,可以很方便的就对其进行改造以适应自己的产品。现在,除了最著名的乐高,很多中国厂商的玩具搭配的也是 Scratch 编程语言,比如小米的玩具。
  • 语法简单。Scratch 的语法与 LabVIEW 有着非常大的不同,它隐藏了更多的编程细节,让初学者可以更容易的入手。LabVIEW 虽然也号称容易入门,但相比比起来, Scratch 才真正算得上是“傻瓜”型编程语言。
  • 采用了更主流的技术。Scratch 是采用了 HTML 5 标准,使用 JavaScript 作为开发语言。LabVIEW 也曾经有过网页版,尽管当时已经可以明显看出 HTML 5 是发展趋势,LabVIEW 却采用了 SilverLight 作为开发平台。后来微软彻底抛弃了 SilverLight ,肯定也会对 LabVIEW 的开发推广造成影响的。

下面是一个具体的示例程序:

这段代码中的积木(一种颜色的近似长方形的一个条形块)分成了三堆,这三堆之间是并行的关系。每一堆积木都从一个事件开始。左边这一大堆是主线程,当接受到用户点击绿色旗帜的事件时开始运行,它在运行过程中会发出一些事件,去启动另外两堆积木。这段程序的主要功能是运行一个循环“repeat 20”,在循环内调用“move”功能,让屏幕上的一只小狐狸(绘制在“costume”里面)向前移动一段距离。同时还让小狐狸发出“喵呜”的声音。

从上面这段程序可以看出来,虽然也是图形化编程语言,Scratch 相比与 LabVIEW 还是有一些明显不同的。

  • Scratch 图形化方面没有 LabVIEW 彻底,它借鉴一些文本编程语言的编程方式,同时在编程时也更依赖文本。编写 LabVIEW 的程序更像是绘图,而编写 Scratch 程序更像是搭积木。
  • LabVIEW 中的基本功能模块多以函数和 VI 的形式存在,它们的外观看上去是一个个的正方形方块。LabVIEW 中的结构的外观会更复杂一些,像是尺寸可变的框架。在 Scratch 中,函数和结构都被称作 block(翻译成模块或者积木),它们看上去都是一个个长条。
  • Scratch 中由于每个积木长得都一样(或者十分类似),它只能用来文字区分不同功能的积木。LabVIEW 中推荐给每个子 VI 都绘制一个有意义的图标,这看起来当然是比 Scratch 的代码美观的多。但是,也有很多程序员非常讨厌这个规范,他们宁可把时间用于改进程序的逻辑,而不是美观程度。
  • 对于程序流程的控制,LabVIEW 使用数据线来控制,按照数据在数据线上的流动顺序来控制程序运行顺序。Scratch 没有数据线。凡是挨在一起的积木,它就是按照顺序从上至下执行每一个积木。没有粘连在一起的积木是可以并行执行的。
  • 因为没有数据线,Scratch 只能使用全局变量来传递数据。
  • 积木使用不同颜色表示不同的功能分类,比如浅黄色的用于发送接收事件;深黄色的用于控制程序流程(比如循环结构,条件结构等);紫红色的用于控制声音,蓝色的控制运动等等。
  • 用不同形状表示不同数据类型,比如数值类型数据放在一个两侧是圆弧的长条里;而布尔型数据放在两侧是尖角的长条里。这保证了程序具有一定的数据类型安全,比如某个积木上有一个两侧尖角的长条凹槽,那么在这个凹槽里就只能嵌入布尔型数据(相当于一个函数,具有一个布尔型的输入参数)。
查看或添加留言

Scheme 编程语言

· 阅读需 4 分钟

Scheme 是第一门我真正系统学习过的函数式编程语言。Scheme 语言的标志是一个 Lambda 字符“λ”,一眼就可以看出这门语言的出处。Scheme 是 LISP 语言的两大方言之一,而 LISP 又是人类开发出的第二款高级编程语言(第一个是 FORTRAN)。

因为太古老,Scheme 的编程思路和现在常见的语言差距还是非常大的。我刚开始接触 Scheme 时的困惑不亚于刚接触 LabVIEW。Scheme 的语法定义是比较简单的,比时下流行的编程语言都简单得多,但毕竟也是一门完整编程语言,不可能写一小段就介绍全面,这里就只能介绍一些最基本功能了。

Scheme 直观上最明显的特点是括号多,它的所有数据(比如列表)和程序结构(比如函数、判断语句)等都被包裹在括号内,因此,一段代码里会有数不清的层层括号。在编程思想上的最大特点就是函数式编程。再 Scheme 程序中,一切都是函数。

在 Scheme 中写 Hello, world 的代码如下: (display "Hello, World!")

在这段中 display 是一个函数,用于在屏幕上打印文字,而后面的字符串则是 display 的参数。单这一句,与常见编程语言的用法差距也不算太大。

在 Scheme 语句中,函数名总是要放在参数之前,运算符也是一个函数。所以,如果要计算 “2+3”,写出来的程序是这样的: (+ 2 3) 。 Scheme 的函数很多是可以跟多个参数的,比如 (max 2 6 3) 或者 (+ 6 4 8) 等等。如果是一组数据,比如一个 list,那么就在括号前加个单引号,比如 '(a b c d),这就不再是函数调用,而是一个列表了。

函数的定义一般类似如下:(lambda (x) (+ x 2))。lambda 是关键字,后面跟着函数参数,在后面是函数体。在 Scheme 语句中使用关键字 define 给常量命名,使用关键字 let 给变量命名。函数也可以是一种变量,比如下面的语句就给了新定义的函数一个名字“square”:

(define square (lambda (n) (* n n)) )

Scheme 语言还有一特点就是没有循环,所有需要循环的地方都要使用递归来完成。这和早期的 LabVIEW 正相反,早期的 LabVIEW 不支持递归,所有要用到递归的地方都必须转换成循环。比如,在 Scheme 中计算阶乘,只能采用递归的形式:

(define factorial (lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))))

我在学习 Scheme 的过程中,最大的收获是把递归彻底弄清楚了。递归有时候还是比较容易绕的,比如把一个列表从头开始归并,和从尾开始归并要采用不同的递归策略。以前都没有深入考虑过,学习了 Scheme 才真正系统的研究清楚了。

查看或添加留言

Lambda Calculus 编程语言

· 阅读需 8 分钟

我刚成为程序员的时候,有一次调试一段 C 语言代码。我一层一层的进入到被调用的子函数中去,想看看一个数据到底是怎么产生的。终于在遇到一个库函数的时候,调试器无法再跟踪进去了。C 语言程序通常会调用很多已经编译好的库函数,程序员只知道这些函数的接口,但看不到它们的实现代码。我知道这是处于效率的考虑,但还是忍不住想,一种编程语言,可不可以不调用任何编译好的库,所有功能都以源代码的形式提供给程序员,方便学习啊。后来进而又想,也许很多关键字,运算符都不是必须提前编译好的,有没有编程语言可以以源代码的形式提供这些关键字,运算符呢?

这些问题,当时也只是一想,没有去研究。多年之后,我在帮老婆做编程作业的时候发现,她们在课上居然学到了这样一种编程语言,叫做 Lambda Calculus。

Lambda Calculus 是一类非常精简的编程语言中的代表。这类语言中还包含 SKI,Iota 和 Jot 等,不过 Lambda Calculus 还是最经典的。Lambda Calculus 小到什么程度呢?只需要用几行文字就可以把 Lambda Calculus 的全部语法描述的清清楚楚,所以这里就介绍一下:

  • Lambda Calculus 中用到的全部字符包括:小写英文字母,英文句号,小括号和一个希腊字母 lambda “λ”。
  • 名字 name:由单个英文小写字母构成,格式为 <name\>。 比如 x,y,a 等;
  • 函数定义 function:由“λ”字符跟一个变量名,跟一个英文句号,再跟一个表达式,结构为 λ<name\>.<expression\>。比如 λx.x,这个函数写成数学的形式是 f(x) = x;
  • 函数调用 application:由函数定义加另一段表达式构成,格式<function\><expression\>。比如: (λx.x)a,这表示,把 a 作为参数传递给前面那个函数,运算结果就是 a。
  • name, function, application 又被统称为 expression (表达式)。
  • 括号用于控制计算的优先级。有时代码里也会加入空格以方便阅读。

以上就是这个编程语言的全部语法了。当时的要求是给这个语言编写一个编译器,其中最核心的部分只用了十来行代码就实现了,恐怕很难有比这更简单的编程语言了。可以直观的看出,这个编程语言的一些简单运算规则:

  • λx.xλy.y 是完全等价的,或者可以写成 λx.x ≡ λy.y
  • (λx.x)a 可以简化成(推演运算得到) a,或者写成 (λx.x)a = a
  • (λx.y)a = y
  • (λx.(λy.x))a = λy.a

大家已经发现了,这个语言,连循环、判断等结构都没有,对了,这些都要自己编程实现;甚至连数字也没有,加减法也没有,这些也通通都要自己定义和实现。下面就介绍一下如何使用 Lambda Calculus 编写一些基本的功能。

  • 实现多参数函数,这个方法有个专用名叫函数柯里化。比如实现函数f(x, y, z) = ((x, y), z) 可以使用如下的代码: λx.λy.λz.xyz
  • 逻辑运算中的“真”被定义为:TRUE ≡ λx.λy.x。这里对于“真”的定义是:输入两个参数,返回第一个。推算一下
    • TRUE a b ≡ (λx.λy.x) a b = (λy.a) b = a
  • 逻辑运算中的“假”被定义为:FALSE ≡ λx.λy.y。也就是输入两个参数,返回第二个。推算一下
    • FALSE a b ≡ (λx.λy.y) a b = (λy.y) b = b
  • 判断语句 if,假设我们需要当变量 b 为 真时,返回 t;当 b 为假时返回 f。那么可以定义 IF ≡ λx.xIF b t f ≡ λx.x b t f。 推算一下
    • IF TRUE t f ≡ (λx.x) (λx.λy.x) t f = (λx.λy.x) t f = t
    • IF FALSE t f ≡ (λx.x) (λx.λy.y) t f = (λx.λy.y) t f = f
  • 有了以上的基础,逻辑运算的定义就简单多了,比如:
    • AND a b ≡ IF a b FALSE
    • OR a b ≡ IF a TRUE b
    • NOT a ≡ IF a FALSE TRUE
  • 定义数字:
    • 我们可以只考虑自然数,其它数值都可以从自然数推算得到。自然数的定义是:
      • 0 是自然数
      • 每一个确定的自然数 a,都有一个确定的后继数 a' ,a' 也是自然数
      • 对于每个自然数 b、c,b = c 当且仅当 (b 的后继数) = (c 的后继数)
      • 0 不是任何自然数的后继数
    • 基于自然数定义,我们可以在 Lambda Calculus 如下定义自然数
      • 0 ≡ λf.λx.x 可发现 0 ≡ FALSE
      • 1 ≡ λf.λx.f x
      • 2 ≡ λf.λx.f (f x)
      • 3 ≡ λf.λx.f (f (f x))
      • ……
  • 为了方便数字运算还要先定义一个辅助的“后继函数”:S = λn.λf.λx.f((n f) x) 。调用这个函数会得到输入参数的后继数,比如 S4 = 5。试验一下:
    • S 0 ≡ (λn.λf.λx.f((n f) x)) (λf.λx.x) = λf.λx.f(λx.x f) x) = λf.λx.f x ≡ 1
  • 加法就可以定义为: ADD ≡ λa λb.(a S) b 。 拭一下:
    • ADD 2 3 = (λa λb.(a S) b) 2 3 = 2 S 3 ≡ (λf.λx.f (f x)) S 3 = λx. S (S x) 3 = S (S 3) = S 4 = 5

以上是 Lambda Calculus 一些最基本的功能,作为一个图灵完全的语言,它能做的远不止这些,其它编程语言能做的,它基本也都可以做。但是我们也发现了,如果一个语言什么预先定义都没有,一切都需要开发者自己从头做起,那么在实际应用中就效率太低了。

Lambda Calculus 的发明人是 Alonzo Church,他有个大名鼎鼎的学生,图灵。Lambda Calculus 对于后来编程语言的发展产生了深远的影响。函数式编程就是受此启发而来。如今,Lambda 函数更是成了主流编程语言的标配。

查看或添加留言

训练一个黑白棋模型

· 阅读需 7 分钟

之前用 LabVIEW 编写了一个黑白棋程序,作为学习 XControl 的示例。那个程序基本完整,但是缺少一个 AI 自动走子的功能。最近抽空尝试训练了一个网络模型,添加到了演示程序中。

所有AI下棋的思路都是非常类似的:根据当前的盘面,给每个可以落子的位置打分,选取分数最高的那个走法。这里的关键就是设计一个最为合理的打分算法。

黑白棋最终判定胜负的标准是看谁的子多,所以最符合直觉的打分方法是:在一个位置落子后,把己方的棋子数目作为这个位置的分数。这个算法有个缺陷,就是当前棋子数最多的走法不见得就能保证将来也棋子数最多。

解决这个缺陷的思路有两条:其一是,不要为当前这一步打分,而是向后预测几步。比如,把双方各下三步棋(也就是总够六步)后的所有可能出现的局面都列出来,然后看那个局面得分最高。考虑的步数越深,棋力也就越高,极端情况,如果预测的足够深,甚至可以找到必胜的下法。这个方法的缺点是预算量非常高,增加预测的深度,计算量会指数级增加。可以通过剪枝做一些优化,但效果有限。

第二条思路是采用更复杂的打分算法,如果只考虑棋子数量还不够好,那么就也同时考虑落子的位置,稳定的棋子的个数,周围空间的个数等等。在这众多的因素中哪些更重要,如何分配权重,对于我这种非专业棋手来说是很难做选择的。不过这部分可以利用机器学习算法,让电脑自己找到最优解。

当然以上两条思路可以结合使用:先找到一个最优的打分算法,再尽量预测到更深的步数。

我尝试训练了一个基于神经网路的打分模型。

我采用的是一个只有一层隐藏层,64节点的全链接神经网络。单隐藏层64节点的神经网络对于解决黑白棋来说,有点太小了。我也不能确定多大才合适,但估计至少也应该采用一个七八层的CNN,才能达到不错的效果。不过,我的目标不是最好的效果,而是只要试验一下可行性。并且,我需要把训练好的模型移植到 LabVIEW 代码上,复杂模型移植起来太麻烦。所以我选择了这个最简单的模型。

模型的输入数据是当前棋盘状态(每个位置棋子的颜色)和一个准备落子的位置,模型输出一个实数表示得分。

训练模型的大致思路是:让模型分别持黑子和白子,自己跟自己下棋,并且记录下每一步的走法。最终胜利一方所有走过的位置都获得正标签,失败一方所有走过的位置都是负标签。用这些标签训练模型,然后重复以上过程。

在训练模型的过程中,我遇到了一些以前从未考虑过的问题。比如,采用何种激活函数。我开始采用的 ReLU 函数,但模型始终无法被训练到预期效果。调试后发现,是 ReLU 的神经元坏死造成的。ReLU 在输入值小于零时,梯度永远为0,这个神经元很可能再也不会被任何数据激活了。这对于目前常见的有着几万乃至几百亿节点的大规模模型来说,根本不是问题。但是对于一个本来就没几个节点的小型模型来说,损失神经元是非常致命的。我把激活函数换成 Sigmoid 之后,效果就好了很多。

我训练模型的方法效率非常低下。在下棋过程中,大多数的步骤可能都不是太重要,不论走这还是走那,对最终结果影响都不大。关键的就那么少数几步,可以决定输赢。但是在训练时候,我也不知道每一步的权重应该有多大,只能假设所有步数都是一样的权重。那些垃圾步不但占用资源,也会影响训练结果。

模型训练好之后,我把它移植到了之前编写好的 LabVIEW 黑白棋 VI 中。棋力算不上很好,但至少是明显优于随机落子。等我空闲的时候,看看还能不能进一步优化下。

程序在: https://github.com/ruanqizhen/labview_book/tree/main/code/%E7%95%8C%E9%9D%A2%E8%AE%BE%E8%AE%A1/Xcontrol/Othello

查看或添加留言

DALL·E 绘图

· 阅读需 1 分钟

申请到了 DALL·E 的账号,赶紧玩了几下。DALL·E 是个人工智能绘图程序,可以根据输入的文字绘制图片。它的水平肯定比不上经过训练的画师,但是对于我这种没有绘图能力的人来说,可能会有些帮助,比如,以后制作文档时,也许可以让它帮忙绘制一些插图。

我先画了一幅程序猿自画像: (Photo of a chimpanzee sitting in front of a computer and programming)

儿子也画了一幅自己喜欢的图画: (Cartoon of apples, peaches, grapes and many kinds of fruits growing on one tree under a clear sky with the moon shining on the background)

查看或添加留言

优化旧照片

· 阅读需 5 分钟

最近测试了一些翻新旧照片的算法,主要是试着把模糊的小照片翻新成清晰的大照片。据说淘宝上有很多人做这个生意,主要是靠手工来修复的。网络少也有不少PS修复旧照片的教程。不过我不会使用PS,所以只能依靠算法了。修复旧照的人工智能的算法也是有一些的,但目前来说,人工智能算法的修复效果在总体上还是比不了人工修复的,但某些情况下表现也还不错。

第1步 选照片

首先找一张老照片:

要想效果好,照片一定要找上图这样的:大头照,而且只有少量折痕和磨损。我也测试了一些质量更差的照片(人脸所占像素太小,有大片磨损等),人工智能对于它们目前还还无能为力。

第2步 去网纹

很多老照片都不是光滑的,像纸上有排列规则的凸点,扫描之后的图片上就会有网纹。上图的旧照片上可以明显看到这些网纹。我找的几个人工智能程序都是解决特定问题的,无法很好的处理这些网纹,所以先要人工去除这些网纹。网上搜了一下,没有专门去除网纹的程序,只有PS相关的教程。PS是收费软件,我也没有。好在有一些免费的图像处理软件可以替代PS。我用了GIMP(GNU Image Manipulation Program)加上FFT插件。FFT是快速傅里叶变换的缩写,用于把时域信号转换为频域信号。

上图经过傅立叶变换,在频域上的图像如下(灰度图部分):

由于原照片里的网纹是规则的(有固定频率),频域图会在一些特定的频段里出现高能量区域,也就是上图用红圈圈出来的部分。我只画了三个圈,但其它那些亮点(除了中心低频区域外),都是网纹造成的,只要把这些亮点全部涂黑,再做反傅立叶变换,新生成的图片就是被去除了网纹的照片了。

第3步 上色

GitHub上最受欢迎的黑白照片上色程序是这个:https://github.com/jantic/DeOldify

我试了一下,效果只能说马马虎虎,上了色的照片看上去还是像旧照片,只是把原来的纯黑白色调中加入一点肉色,一看就不是真的彩色照片。

如果会PS的,肯定还是PS效果好。

第4步 清晰化

我在GitHub上找到了两个照片变清晰的软件,一个是微软的 https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life

一个是腾讯的 https://github.com/TencentARC/GFPGAN

两个软件各有千秋,比如微软的可以修复裂痕,但腾讯的可以放大照片。具体那个效果更好,要针对不同情况测试一下。

这两个软件都是侧重于对人头像进行优化,对其它区域的优化会差一些,所以经过它们优化的照片常常是人脸非常清晰,但衣服还是模糊的。再有它们对于眼镜的处理都不太好。常把眼镜当成皱纹;或者把眼镜上的反光当作眼睛来处理。有时候生成的照片非常诡异吓人。

另外,它们也没法处理太小的人像,或是有缺损的人像。

处理后的效果

查看或添加留言

重新制作了书籍网页

· 阅读需 3 分钟

最近学习完了React,又使用Docusaurus重新为书籍制作了网页:https://lv.qizhen.xyz/

实际上,Docusaurus已经帮我作为绝大部分工作,我学习的React技能基本没有用上,毕竟书籍的格式还是比较简单固定的,不需要非常炫酷的界面。

之前是用Docsify制作的页面。我对于Docsify的界面和功能已经非常满意了,最主要的问题是它制作的网页是客户端渲染的,搜索引擎都不会爬取。墙外的搜索市场已经被Google垄断,恐怕Google是不会有动力去支持搜索客户端渲染页面了。国内的搜索市场竞争还更激烈一点,可以它们居然做的都比Google还差很多,也没有指望。只能自己修改网页了。

Docusaurus使用起来比Docsify麻烦不少,所需技术门槛也稍高。这一是因为Docsify只支持制作文档网页,而Docusaurus还可以制作个人主页和博客,功能复杂了不少,虽然都是我都用不上的。二是因为Docusaurus是制作服务端渲染页面的,多了一个Build步骤。再有Docusaurus比较新,资源相对来说少一些。

但不管怎么样,Docusaurus也是非常令人满意的。现在Google可以爬取我的页面了,国内的搜索引擎都还不行,但这不是网页的问题,最可能是我的域名没有工信部认证,国内引擎不愿意访问。

Docusaurus开发团队非常活跃,应用前景应当超过其它类似工具。非常推荐用于创建静态的个人主页、博客、文档等。

查看或添加留言

制作电子书网站的一点想法

· 阅读需 6 分钟

头一次之作电子书网站,因为没经验,很多问题是做了之后才发现的。等以后有时间了,详细写一写,目前先大致总结一下。

最开始弄的时候,没有借助任何工具,直接就开始搭网页了。当然底层的库用的还是别人写好的,比如最主要的部分,把Markdown格式文档(MD)转换成HTML格式用的是marked.js。上层的代码也并非完全从头开始写, 我也参考了别人的代码。不用工具,自己写的最大好处是让我学习了很多以前不会的技能。以前是没做过网站前端开发的,Javascript也没用过。现在能做个简单网页了。

但是学习过后,发现如果把网页功能完善起来,全自己开发太费时间了。而且继续花时间对我学习的帮助也没有之前那么大了。于是我还是用了工具把网页从新做了一边。最著名的工具大概是 gitbook-cli,一个GitBook发布的旧版本的开源工具。这个工具是在线下把Markdown格式文档转换成HTML格式文档的。更新一个页面的流程大约是这样:找到需要更新的MD文档,修改保存,运行gitbook-cli,生成HTML文档,把生成的HTML文档上传至GitHub。步骤有点繁琐,不是我想要的。而且gitbook-cli有四五年没更新了吧,直接下载后不做点配置都根本运行不起来了。所以放弃了。

后来是用的Docsify重新生成了网站。Docsify还是很简单易用的,不过bug也是很多。有一些bug我直接在本地修改了,但有一些是我没法改的,比如最简单的,它对于HTML tag中图片的路径解析跟别人都不一样,比如:<img src="images/image192.png">。它用绝对路径来解析,而其它MD转换工具全部用的相对路径。这个问题我估计Docsify自己也没法改了。不过我现在还有临时解决办法,先将就着用一段时间吧。Docsify生成的网站最大的问题还是没办法被搜索引擎检索,当然也可以说这是搜索引擎不够强大,但是我也没法改变搜索引擎,只能再改进自己的网页了。

Docsify和我最开始写的网页原理完全相同,都是在客户端做渲染,服务器并没有给客户端发送任何HTML格式内容,而现在的搜索引擎只认HTML,它们是不会运行渲染程序的。所以也就没法抓到任何内容。要想被搜索引擎认识,还是得有HTML文件才行。有些网站是可以帮我们做这件事的,比如GitBook。我在GitBook上也生成了一份电子书,https://labview.qizhen.xyz/ 。在GitBook上做电子书网页,基本没有任何可以配置的东西,所有的网页都长一个模样。这也不是设么大问题,但它无法提供留言功能,还是非常不爽的,我就喜欢看留言。GitBook收费版可能有留言功能,不过穷人并没有尝试付费版。

穷人也不是完全没办法,我们开可以利用GitHub Actions这个免费功能来实现HTML文档的自动生成和部署。GitHub Pages默认就集成了一个Action流程,它可以在每次用户更新 MD 文件之后就调用Jekyll这个工具,为更新的MD文档生成HTML文档在部署到服务器上。只不过GitHub Pages默认的工具对生成的网站有一定格式限制,比较适合做博客,不适合发布书籍。其实可以不用它默认的工具,而是利用GitHub Actions调用一个更适合电子书的转换工具,在MD文件更新后做自动转换和部署。近期我还不会尝试这件事,因为React这个东西我才学了一半,业余时间就那么一点,先抓紧时间学完React再去建新网页。至于转换工具,我会去使用 Docusaurus,因为它使用React写的,正好让我学完了可以实践一下。

查看或添加留言

放在GitHub上的书还没法被检索

· 阅读需 3 分钟

我把书的原稿开源放到GeiHub上之后,给它做了个页面方便阅读。做好的网页是一个单页面应用,也就是说书里的所有内容都是放在同一个页面上:https://lv.qizhen.xyz/。别看每个章节都会在地址栏上显示不同的URL,比如“https://lv.qizhen.xyz/#docs/structure_condition”,其实#号后面的都只是同一页面不同的参数而已。浏览器只能展示 HTML 格式的内容,但GitHub的网站上并没有存HTML格式的文档,所有文档使用Markdown(*.md)格式保存的。GitHub的网站也不会把MD格式文件动态渲染成HTML格式再传给读者的浏览器,网站发给浏览器的还是 MD 格式的数据,是浏览器端运行了一段JavaScript程序,才把 MD 格式的数据渲染成了HTML。

GitHub的服务器应该是不支持后台渲染的,做成前台渲染的单页面应用,用户体验会好一些:换页反应比较快,还可以随时改变背景配色等。但是这种做法对搜索引擎非常不友好。

搜索引擎在检索网站时,一是它不会尝试不同的参数,也就是说它只检索 https://lv.qizhen.xyz/ 这一个首页面;二是搜索引擎的爬虫也不会运行JavaScript,所以即便是首页的内容,它也看不到。总之搜索引擎根本看不到这本书的任何内容,也就别想搜索到它了。

我还不知道这个问题怎么解决,不过GitHub上搭建博客还有很多其它方法,有一些是产生静态HTML的,应该没有这个问题。等有时间再试试其它的那些工具吧。

GitHub自带的搜索也几乎没法搜索中文书,它是按词搜索的。它定义的“词“就是两个空格或者符号之间的字符串,这对于代码或者英文文档都非常合适。但是中文的词和词之间是没有空格的,GitHub对于中文只能整句匹配,只有文章里恰好有跟搜索内容一模一样的句子时才会被找到。

查看或添加留言